

2

Introduction

Have you ever looked at a gadget and wondered how it works? Maybe it was a
remote-controlled boat, a vending machine, or an electronic toy? Or have you
wanted to create your own robot? Where and how do you start? The Arduino
board can help you find some of the answers to the mysteries of electronics in a
hands-on way.

Arduino system inspires you to create devices that can interact with the world
around you. By using an almost unlimited range of input and output devices,
sensors, indicators, displays, motors, and more, you can program the exact inter-
actions required to create a functional device.

Over the years Arduino has been used as the “brain” in thousands of creative
projects; by sending a set of instructions to the microcontroller on the board.

Microcontroller

3

You are surrounded by dozens of microcontrollers every day: they are embedded
in timers, thermostats, toys, remote controls, microwave ovens, and even some
toothbrushes. They have been programmed to sense and control activity using
sensors and actuators.

1. Sensors listen to the physical world (input devices). They convert energy
that you give off when you press buttons, or wave your arms, or shout, into
electrical signals. There are many kinds of sensors (e.g. buttons and knobs are
sensors that you touch with your fingers).

2. Actuators take action in the physical world (output devices). They convert
electrical energy back into physical energy, like light and heat and movement.

3. Microcontrollers listen to sensors and talk to actuators (brain). They
decide what to do based on a program that you write.

Microcontrollers and the electronics you attach to them are just the skeleton
that make your projects responsive, but only you can make them beautiful.

4

Blinking LED 012 Getting Started 61

Blinking LED 012 Blinking LED 172

Blinking LED 012 Pattern Waves 243

Blinking LED 012 Repeat and Resonate 324

Blinking LED 012 Press On 395

Blinking LED 012 Key Notes 506

Blinking LED 012 Stopwatch 587

Blinking LED 012 Quick Reflex 668

Blinking LED 012 Counter Shake 749

Blinking LED 012 Hourglass 8210

Blinking LED 012 Alarm System 9211

Blinking LED 012 Spin Range 9812

Table of contents

5

Blinking LED 012 LCD Messages 10413

Blinking LED 012 Crystal Luck 11214

Blinking LED 012 Pixel Dodge 12015

Comprehensive _______________________________

Blinking LED 012 Motion Count 13216

Blinking LED 012 Morse Code 13517

Blinking LED 012 Arcade Cyclone 13918

Blinking LED 012 Wack a Mole 14219

Blinking LED 012 Light Sabers 14620

Glossary _______________________________

1
Lesson

1
Getting Started

7

Get to know
your tools

 Get to know your tools

Introduction to the microcontroller board…

1. ATmega microcontroller
The ‘brain’ of your board

2. Analog Input
Pins that use analogRead()

3. GND and 5V Pins
Provide power (5V) and
ground/GND (0V) to the circuit

4. Digital Pins
Pins that use
digitalWrite()
digitalRead()
analogWrite() –only with PWM
(~) symbol pins

5. Reset Button
Reset the microcontroller

6. USB Port
Power the board, upload
sketches (programs),
communicate with your program

7. Power Connector
Power the board without plugging USB, using an external
power source (e.g. 9V battery)

A. Power LED
Indicates the board is receiving power

B. Pin 13 LED
Built-in LED actuator

C. TX and RX LEDs
Indicate communication between board and computer.
Flickers during sketch upload and communication

5

6

3

2

7

1

4

B

C

A

Getting Started1

8

Electric
Components

 Basic Circuit Components

Getting Started1

Breadboard
The breadboard is the primary place
you will be building circuits. The
horizontal and vertical rows (used
for power and ground connections)
of the breadboard carry electricity
through thin metal connectors
under the top layer of plastic. The
middle row breaks the connection
between the two sides of the board.
The holes allow you to connect wires
and components together without
having to use soldering

Jump wires
Used to connect components to
each other on the breadboard

Battery Snap
Used to connect a 9V battery to
power leads that can be easily
plugged into the breadboard or
the Arduino

USB Cable
Allows you to connect your board
to the computer for programming.
It also provides power to the board

9

LED
Light emitting diode that
illuminates when electricity
passes through in one
direction

Resistors
Resist the flow of electrical
energy in a circuit, changing
the voltage and current

10

Learning about
circuits

 Learning about circuits

A circuit is a complete path around which electricity can flow. It must include a
source of electricity (power), such as a battery. Conductive materials, like metal
wires, link the positive point of higher potential energy (often referred to as
power or +ve) and negative ends of the battery (often referred to as GND or –ve),
the point where potential energy is lowest in the circuit. In these type of circuits
electricity only flows in one direction (direct current, or DC). In an open circuit,
there is a break along the line, and the current (electric flow) stops.

When electric current flows, it can be used by electrical appliances, such as light
bulbs, that convert the electrical energy into other forms of energy. Things that
convert other forms of energy into electrical energy are called sensors, and things
that convert electrical energy into other forms of energy are called actuators.

Open Circuit Closed Circuit

Getting Started1

11

In order to talk about electrical circuits, you need to be familiar with the terms
voltage, current, resistance and about Ohm’s Law, which defines the relationship
between all three.

• • Voltage (measured in volts – V) is the force
that pushes electrons through a circuit to
produce electricity.

• • Current (measured in amperes – A) is the act
of the electrons flowing through the circuit
(rate of flow).

• • Resistance (measured in ohms – Ω) is a force
that counteracts the flow of current.

Note

 Note:

1. All the electrical energy gets used up in a circuit by the components in it.
Each component converts some of the energy into another form of energy
(light, heat, sound, etc.).

2. The flow of current at a specific point in a circuit will always be the same
coming in and going out.

3. Electrical current will seek the path of least resistance to ground. Given two
possible paths, more of the electrical current will go down the path with less
resistance. If you have a connection that connects power and ground together
with no resistance, you will cause a short circuit, and the current will try to
follow that path. In a short circuit, the power source and wires convert the
electrical energy into light and heat, usually as sparks or an explosion.

Ohm’s Law V = I * R
Voltage = current * resistance

12

Software
Setup

 Software Setup

These software options will provide you a programming environment where you
can write and experiment with your code.

1. Arduino IDE

In order to use the Arduino board, you need to
program the microcontroller. You do this using
the “Arduino IDE” (IDE = Integrated Development
Environment) software, which allows you to write
programs, which we call “sketches,” and upload them.
You can download the latest version of the IDE, and find the installation
instructions, from: arduino.cc/download

After you have installed the
Arduino IDE, it is time to set
up your Arduino board.

You will tell Arduino IDE
which board you are using.
There are a lot of options!
The one in your kit is an
Arduino Uno.

Next choose the serial port
your Arduino is connected
to from the TOOLS > SERIAL
PORT menu.

This is likely to be the COM port with the highest
number. There is no harm in guessing wrong, and if it
doesn’t work, try the next one. To find out, you can
disconnect your Arduino board and re-open the menu;
the entry that disappears should be the Arduino board.
Reconnect and select that serial port.

Finally, you will upload the Arduino sketch to the board!

Getting Started1

13

Arduino
Uno R3

 Arduino Uno R3 Clone Driver Fix

For the Arduino IDE software to recognize an Arduino clone microcontroller you
need to download and install an Arduino Uno R3 clone USB Driver.

https://www.srishtirobotics.com/more/blog/154-arduino-uno-r3-clone-ch340-
ch341-usb-driver

*Download the serial driver suitable to your device

Connect the Arduino board to your computer using the USB cable.

If installation is successful, the new USB driver will be visible in the Devices
Manager of Windows.

In the Arduino IDE select the
same COM port that you
have in the device manager to
upload Arduino code (sketch)
on the board.

14

2. Tinker CAD (online open source)

Tinkercad Circuits allows students to use an interactive
circuit editor, where they can explore, connect, and code
virtual projects with a bottomless toolbox of simulated
components.

You need to create an account and sign into
Tinkercad, where you will find a dashboard
of your recent designs. To see a view of your
Circuit designs, simply click the Circuits link in
the left menu and you can create something
new by clicking the Create New Circuit button.

Tinkercad allows you to visualize what a
program, you write in the “Code Editor”, does
using the simulated Arduino Board in the
Workplane.

While you are writing an Arduino sketch, sometimes you make
a mistake and the program will not be compiled (saved) and
uploaded. This happens to professional programmers all the time!
The error message can tell you when a problem occurs and how
to fix it.

Getting Started1

15

First
circuit

 First circuit – Let there be light!

You can light up a LED in three ways:

The LED can be
connected straight to a

9V power source.

The LED can be
connected to the

breadboard (with its
two legs in different
rows of the board)

which is powered by a
9V power source

The LED can be
connected to the

breadboard (with its
two legs in different
rows of the board)

which is powered by
the Arduino board

through the USB power
source

16

Note

 Notes:

• • The longer leg of the LED, called the
anode, is supposed to connect to the
positive (+ve) power source and the
shorter leg, the cathode, should connect
to the ground negative (-ve) source.

• • In all the 3 ways, a 220Ω resistor (the
colored stripes identify the resistor’s
value) was added to the circuit to regulate
the voltage flow through the LED, because
a high voltage would cause the LED to
pop!

• • The resistor can go before or after the LED, and still protect it. The current that
flows out of a battery is always equal to the current that flows back into the
battery.

• • The breadboard is powered through the horizontal rows “voltage rails”, at the
top and bottom of the breadboard, by connecting the red row to the positive
(+ve) side of the power source (5V pin on the Arduino board) and the black row
to the negative (-ve) side of the power source (GND pin on the Arduino board).

• • When building your circuits for the future projects be sure to replicate the
reference images of the lessons precisely.

• • Be sure you are wiring the components to their correct polarity, which side is
connected to the (+ve) end and which is connected to the (–ve).

• • It is helpful to keep your wire colours consistent (red for power, black for ground)
throughout your circuits.

Getting Started1

1
Lesson

2
Blinking LED

18

 Your �rst
program

 Your first program

Now that you understand the basics of electronics,
it is time to start controlling things with the
Arduino, which means that you can now command
the elements on when and how to work, how long
and how often.

This is done through programming which is
important for speeding up the input and output
processes in a machine. Programing is also important
to automate, collect, manage, calculate, and analyze
processing of data and information accurately.

The circuit is setup differently in a way
that the elements are connected to the
Arduino pins directly. As you saw in the
first lesson (pg.00) the Arduino board has
digital pins (pins 2 – 13) on one side of the
microcontroller, analog input pins (pins A0
– A5) on the other, as well as power (3.3V/5V
pins) and ground pins (GND pins).

First you have to configure the Arduino’s digital pins that you want to use with
either with an INPUT or an OUTPUT component.

• • pinMode(2, OUTPUT); or pinMode(3, INPUT).

Next comes giving the command to that component of the pin:

• • an OUTPUT component must be told if it should be on/off, given voltage(HIGH)
or not(LOW), e.g. digitalWrite(2, HIGH);

• • an INPUT component will collect readings based on its state (on/off),

e.g. digitalRead(3);

Blinking LED2

19

Build your
circuit

 Build your circuit

Place a LED on the breadboard (with its two legs in different columns of the
board), but instead of connecting the anode to the power, connect it to digital
pin 2 to make it programmable by the board. Remember to also add a 220Ω
resistor to protect the LED and connect it to the cathode and ground (GND).

Here, when the board is powered up by the USB, the LED will
not automatically light up because it is no longer connected to
the power source directly. Instead, being connected to digital
pin 2, means it is waiting for an instruction on whether or not it
should turn on.

20

To program this you need to understand the coding language that the
microcontroller will understand.

The basic structure of the Arduino C++ programming language is made up of
these two required parts, or functions, for the program to work.

void setup() {

statements;

}

void loop() {

 statements;

}

*The loop() function will repeat the statements inside it over and over again and
continue to run until you cut the Arduino’s power supply.

Functions contain an enclosed block of statements in curly brackets {}. Each
statement (line of code) ends with a semicolons (;). In this lesson you will use
some functions including pinMode(), digitalWrite(), and delay() that are already
part of the Arduino environment.

setup() is the preparation. It is the first function to run in the
program, it is run only once, and is used to set up pinMode() or
initialize serial communication (you will learn this later).

loop() is the execution. The function that follows next and includes
the code to be executed continuously – reading inputs, triggering
outputs, etc. This function is the core of all Arduino programs and
does the bulk of the work.

Blinking LED2

21

Build your
program

 Build your program

To write your program you must know what you want to achieve from running
this program.

The aim of this lesson is to program a LED to keep turning on for one second and
turn off for another second (Blinking LED).

It is good practice to always write down your list of instructions as a pseudo
code, which is a rough draft in your own words, before translating them into the
programming language syntax.

The pseudo code would be:

Inside the setup function:

1. Configure the digital pin that the LED is connected to as an OUTPUT pin
(since you want to light up the LED, you are using this LED as an OUTPUT
component)

Inside the loop function:
2. Command the LED to turn on
3. Wait for 1 second
4. Command the LED to turn off
5. Wait for 1 second

* The previous steps (2-5) will repeat inside the loop

22

That translates to code like this:
void setup() {
 pinMode(2, OUTPUT);
}
void loop() {
 digitalWrite(2, HIGH);
 delay(1000); // Wait for 1000 millisecond(s)
 digitalWrite(2, LOW);
 delay(1000); // Wait for 1000 millisecond(s)
}

Notes:
• • The delay() function allows you to pause the execution of your Arduino

program for a specified period. The function requires a whole number that
specifies how many milliseconds the program should wait.

• • // this is a comment – to include an explanation of your code, you can leave a
comment. The computer will ignore anything that starts with //.

• • You can write a multiline comment by enclosing the code lines within these
comment markers (/* …. */)

e.g. /* digitalWrite(2, HIGH);

 delay(1000);*/

* These lines will not be executed.

Blinking LED2

23

 Take it further!

 Take it further!

Hints

 Hints:

Challenge

Traffic Light Simulator

Traffic lights are great examples of simple robotic systems that
have had profound effects on society.

Using code and a simple circuit, we will create a model of a three
coloured traffic light. The circuit will consist of three lights: green,
yellow and red, that are each connected to the Arduino board.

The traffic light will be green for 5 seconds, yellow for 1.5 seconds,
and red for 3 seconds.

152 Arduino

